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(uniform surface temperature T,) and hemisphere 2 (uniform 
surface temperature T2) is expressed as 

Q = AP,, 4G - 73. (4) 

The overall exchangmg factor F12 is [l] 

where P is the emissivity of the surface of hemispheres. Chen and 2 
In terms of radiant heat-transfer coefficient h,, equation a and b are experimental 

(4) is approximately expressed as 
Churchill [6] a + 2b coefficients 

2 
Q = 4hXT, - T2) 

h, = 4c+,,T3 

where T = (TI + T,)/2 in “K. 

(6) 

(7) 

This work 
(2/p) - 0.264 

2 in numerator is the ratio 
AetA, 
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NOMENCLATURE 

Br, Brinkmann number, 
!.&u; 

k,(T, - Q); 

c,, skin fraction coefftcient, 2r,/p,Ui ; 
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h, distance between upper and lower plates; 
k, thermal conductivity; 

4wh Nu, Nusselt number, 
kAT, - T,) 

= -4:; 

p, pressure; 
4. heat flux ; 

Re, 
P,udt 

Reynolds number, -; 
Pv 



SHORTER CGMMUNrCATIGNS 

temperature; 
velocity of upper plate; 
velocity; 
normal coordinate; 
viscosity ; 
density; 
shearing stress. 

Subscripts 
c, conditions at critical point; 
0, conditions at upper piate; 
w, conditions at lower plate. 

superscript 
* parameter is nondimension~ according to pertinent 

defmition in text. 

INTRODUC’MGN 
Tote MAGNITUDE of the wall heat transfer and skin friction in 
the flow of a viscous heat conducting fluid arc known to be 
very dependent on the physical (thermodynamic and trans- 
port) properties of the fluid Thus, near the critical point of 
the fluid where the physical properties vary strongly with 
both pressure and temperature, one would expect that the 
skin friction and heat transfer would be extremely sensitive 
to the tbe~~~a~c state of the fluid. 

The present work examines the effects of the severe fluid 
transport property variations near the critical point on 
k+m.inar Couette Row with heat transfer. The constant 
property solution for Couette ftow is well known. Because 
of its simplicity and similarity with boundary Iayer type flow, 
Couette flow has been used to study various effects in viscous 
heat-conducting fluids. For example, the effects of dissoci- 
ation and ionization have been studied by Liepmann and 
Blevis [I], the effects of binary mass addition by Knuth [2], 
and the combined effects of radiation and conduction by 
Grief [3] all using the Couette flow model. In addition, since 
only transport properties are involved, this model can be 
used to separate the influence of transport from thermo- 
dynamic properties. 

Consider the laminar, steady, twodimensional motion of a 
viscous beat-conducting fluid bounded by two infinite 
plane walls parallel to the x-z plane. The lower wall, 
located at y = 0, is stationary while the upper wall, located 
at y = h, is in uniform rectilinear motion parallel to the x 
axis with a velocity U0 The lower wall is at a uniform 
temperature T,, while the upper wall is at a uniform tem- 
perature 7’,, The pressure is assumed to be constant and the 
normal or y component of velocity is assumed to be zero. 
It is further assumed that the fluid dynamic and thermo- 
dynamic properties of the flow do not vary with x Under 
theses mumptions, the rnom~t~ and enem equations 
in nondimensiona form become. 

du* 
t* = jl* dy* 

q* = -&I? 
dy* 

where the nondimension~ variables are 
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Of 

(2) 

(3) 

(4) 

The Brinkmarm number (Br) is a measure of the ratio of 
viscous dissipation to heat transfer by conduction. For most 
fluids near the thermodynamic critical point, in practical 
situations where laminar flow will exist, the Brinkman 
number is of the order of lo-* or lower. Although it could 
be neglected in the present analysis, the viscous dissipation 
term will be retained in the energy equation since it could be 
necessary in some other variable property situation and it 
does not greatly increase the complexity of the solution. 
The tiiiting case OF zero Brinkman number wifl, however, 
be indicated later. 

The boundary conditions are 

aty*=O: u*=O, T+=O (5) 

at y* = 1: u* = 1, T* = 1. (6) 

Directly integrating equations (1) and (2) and using the 
results in the subsequent integration of equations (3) and (4) 
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y* = I 

s 

k* dT* 
1 2-e 
!&* 

2 
0 

P’* 
- 2Br gdT* 

s I P* 
9 0 
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6 
K=769x10-2~ c m”K 

(10) 

Equations (7) and (8) determine the heat transfer and shearing 
stress at the wall and equations (9) and (10) are sufficient to 
determine the velocity and temperature profiles. In the 
limit of Br + 0 equations (7-10) reduced respectively to 

1 

4: _=_ 
r: s EdT*, 

j, k*dT* 

p* 
rz = ~ 

0 :,* 

yk*dT* 

+--_, 

s k+dT* j k* dT* 

1* 
0 

0 

In the general case (as well as in the limit Br -P 0), the solution 
is obtained in terms of quadratures involving the transport 
properties k and p. 

The constant property heat-transfer and skin friction 
expressions are 

Br C,Re 
Nu=~+~. 2=l. 

The constant property relation between heat transfer and 
skin friction is 

Velocity and temperature profiles have been obtained by 
numerical evaluations of the integrals involved in equations 
(9) and (10) for para-hydrogen near its critical point. The 
properties of para-hydrogen in current use in the vicinity 
of thermodynamic critical point were available to the authors 
asa standardcomputer subroutine STATE [4]. The transport 
properties for par&hydrogen are shown in Fig. 1 for a 
pressure ratio P/PC = 1.03. The drastic changes in the 
properties with temperature near the critical point are 
obvious. 

The resulting velocity and temperature profiles are shown 
in Figs. 2 and 3 for the pressure ratio P/PC = 1.03 and for 
several values of the wall-to critical-temperature ratio. 
Similar curves have been obtained at higher pressure ratios 
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FtG. 1. Transport properties of pura-hydrogen, P/P, = 
1.03; [4], 

and, as expected, the variations in the curves diminish as 
the pressure becomes further from the critical pressure. Since 
the shear is constant between the plates, it is not surprising 
that near the cooler wall (y* = 0) where the viscosity is 
relatively high (see Fig. 1). the velocity gradient du*/dy* is 
relatively low. Near the y* = 1 wall, where the fluid is 
relatively warm (and the viscosity is correspondingly 
lower); the velocity gradient is relatively high.The qualitative 
shape of the temperature profile can be explained by a similar 
consideration of the variation of thermal conductivity with 
temperature. 

More interesting, however, are the skin friction and heat- 
transfer results shown in Fig 4. Here the Nusselt number and 
the product (C,R+), are presented as functions of the 
dimensionless temperature T: = (T, - T,)/(T, - T,), with 
pressure level as a parameter. It is convenient to present 
the results in terms of this dimensionless temperature since 
it is indicative of the temperature of the fluid between the 
walls relative to the critical temperature. 

At large negative values of T: (gas region), both the 
Nusselt number and the skin friction coefftcient are close 
to the constant property values, which indicates that the 
rather weak temperature dependence of the properties in this 
region is adequately approximated by a constant property 
analysis. Since Ny, and (CIRe/2),, as defined, are for the 
stationary wall, one observes that as T: -) 0 (i.e. T, + T,) 
the Nusselt number and skin friction coefficient for the 
stationary wall both drop off sharply. At a pressure 3 per cent 
grater than the critical pressure, the Nusselt number is re- 
duced by 34 per cent and the skin friction by 44 per cent at 
Tr = 0. Interestingly, the corresponding change in thermal 
conductivity is 200 per cent, and in viscosity is of the order 
of 400 per cent. Finally, as T* increases away from zero, the 
Nusselt number returns to constant property, which is 



FQo, 2. Velocity profiles for para-hydrogen. (Br = 0.01; 
PIP, = 1.03; AT/T, = 0.30). 
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FKZ. 4. Heat transfer and skin friction for pcno-hydrogen. 
@r = 0.01; ATiT, = 8.30). 

consistent with the behatiuur of the liqrrid thermal conduc- 
tivity (Fig I). The skin friction coe#kient~ however, does 
not come back to the Gonstant property value, which renects 
the rather strong variation of hquid viscosity with tempera- 
ture.. 

In Fig. 5, the constant property analogy between heat 
transfer and skin friction is seen to hold as it is brought close 
to the critical point. If, however, part of the fluid between the 
plates is at the critical temperature (0 < T,* < l), the devia- 
tion from the analogy is significant. The trend in the liquid 
region is not clear, but T,* -- 14 is very near the freezing 
point for hydrogen and the curves could not be extended. 

CONCL~ING REMAIUB 
In Iaminar flow, the Couette Bow model examines only 

the tifIuence of the transport properties fi and k on heat 

Fro. 3. Temperature profiles for para-hydrogen. (13r = 0.01; 
PIP, = 1.03; AT/T, = 0.30). 
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RG. 5. Heat. transfer and skin friction analogy for puru- 
hydrogen. {Br = 0.01; AT/z = 0.30). 

transfer and skin friction; an anafysis of this model near 
the thermodynamic critical point produces the Wowing 
result& 

I, AXthough the influence of the variation of trarrsport 
properties near the critical point is to sharply decrease heat 
transfer, this decrease is nowhere near the magnitude of the 
property variations themselves 

2. The low Brinkman number (lo-’ or less) associated 
with the critical point indicates that viscous dissipation can 
be neglected with considerable confidence in more compltx 
analyses. 

3. If ah of the fluid between the plates is in the gas-like 
region above the critical point, conventional analogies 
between heat transfer and skin friction may do an adequate 
job of predicting heat transfer. Tf, however, any of the fluid 
between the plates is at the critical poin& these analogies 
are not like@ to pr&icc sucoes~. 
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